Aquaculture Nutrition
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate27%
Submission to final decision62 days
Acceptance to publication22 days
CiteScore6.300
Journal Citation Indicator1.100
Impact Factor3.5

Effects of Tannin Supplementation in Diet on the Resistance to Ammonia Stress of Pacific White Shrimp Litopenaeus vannamei

Read the full article

 Journal profile

Aquaculture Nutrition provides a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology.

 Editor spotlight

Chief Editor, Erik-Jan Lock, is Research Director for Nutrition and Feed Technology at Nofima and Professor at the University of Bergen. He previously worked at the Institute of Marine Research and has experience across several fields such as mineral nutrition and new food resources.

 Abstracting and Indexing

This journal's articles appear in a wide range of abstracting and indexing databases, and are covered by numerous other services that aid discovery and access. Find out more about where and how the content of this journal is available.

Latest Articles

More articles
Research Article

The Effect of Feeding with Chironomid and Artemia on Fatty Acids and Amino Acids Profiles in Persian Sturgeon (Acipenser persicus) Larvae

This study aimed to examine the effect of various live foods on the fatty acids (FAs) and amino acids (AAs) profiles in Persian sturgeon (Acipenser persicus) larvae. One thousand and two hundred larvae were cultured in circular concrete tanks, and four treatments were administered as: (1) Artemia + Daphnia, (2) Artemia, (3) Artemia + Chironomid, and (4) Chironomid. Each treatment was considered as three replicates over an 11-day period. At the end of the experiment, treatment 1 (Artemia + Daphnia) showed the highest average weight of larvae, and the lowest weight was observed in treatment 4 (Chironomid). Survival rate ranged from 83.84% to 88.86% and no significant difference was observed among the groups (). Among Artemia-fed larvae, the predominant FAs were docosahexaenoic acid (DHA), oleic acid (ω9), and monounsaturated fatty acids (MUFA), while saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) (ω3 + ω6) were present in a lesser proportion (). In larvae fed with Artemia and Daphnia, the predominant proportions were observed in SFAs, eicosapentaenoic acid (EPA), ω3, DHA + EPA, and the n3/n6 ratio, all registering the highest percentages. Conversely, MUFA, ω6, and the DHA/EPA ratio displayed the lowest percentages (). Moreover, larvae fed with Artemia exhibited higher levels of ω6, PUFA (ω3 + ω6), and DHA/EPA ratio. In contrast, larvae fed with Chironomid showed lower levels of EPA, DHA + EPA, and n3/n6 ratio (). Among larvae fed with Chironomid, solely the DHA/EPA ratio exhibited a higher value compared to larvae fed with Artemia and Daphnia (). The amount of leucine in fish fed Artemia + Daphnia was more than the other treatments (). This study revealed a significant difference in amino acids composition among various live foods (), but no significant difference in AAs was observed in the body of Persian sturgeon larvae (). The results of this study suggest that the Persian sturgeon larvae possess the ability to maintain a balanced state of AAs. It is also evident that the FA profile of different live foods can affect the overall FA levels in the body of Persian sturgeon larvae, ultimately contributing to the enhancement of fish survival rate and growth.

Research Article

A Novel Protein Sourced from Chinese Medicine Residue for Golden Pompano Feed: Endothelium Corneum Gigeriae Galli Residue (ECGGR)

Fishmeal is an important protein source in aquafeed. However, due to the limited natural resources, fishmeal is in short supply, resulting in a price surge for fishmeal. Here, we reported a kind of Chinese medicine residue, endothelium corneum gigeriae galli residue (ECGGR), as a fishmeal substitute in the diets of Trachinotus ovatus. Six isonitrogenous and isolipidic diets were formulated, substituting fishmeal at 0%, 6.25%, 12.5%, 18.75%, 25%, and 31.25%. There was no significant difference in the growth performance when the fishmeal substitution level was no more than 25%. The smallest FCR was obtained at the 18.75% substitution level. Furthermore, substituting ECGGR for fishmeal had no effect on whole-body and muscle proximate compositions, except when the replacement level exceeded 25%, which led to a decrease in whole-body moisture and an increase in whole-body crude protein. The contents of Gly, Cys, Ile, Tyr, Pro, and EAAs/TAAs were altered as the substitution level varied. However, dietary replacement of fishmeal with ECGGR did not degrade muscle protein quality, according to a nutritional evaluation of muscle essential amino acid composition. In terms of hepatic antioxidant capacity, neither the overall antioxidant status nor the expression of genes in the Nrf2-ARE pathway was altered by dietary ECGGR. Moreover, the expressions of p65, TNF-α, and IL-8 in the intestine were upregulated at the 31.25% substitution level. Also, more goblet cells were observed in the intestine at substitution levels of 25% and 31.25%. In conclusion, ECGGR can substitute for fishmeal at the optimal level of 18.75% without adversely affecting the growth performance, protein quality, or hepatic and intestinal health of golden pompano.

Research Article

Changes in Digestive Enzyme Activities during Larval Development of Spotted Seatrout (Cynoscion nebulosus)

The spotted seatrout (Cynoscion nebulosus)—an important commercial species—has a high potential for aquaculture in the Gulf of Mexico. To optimize its feeding during larval rearing, this study aims to evaluate the primary gastric (pepsin), intestinal (leucine aminopeptidase and alkaline phosphatase), and pancreatic (alkaline protease, trypsin, chymotrypsin, amylase, and lipase) enzyme activities from hatching to day 30. A multivariate analysis identified three digestive enzyme development stages during the spotted seatrout larval transformation. The first stage occurred between 1 (mean ± standard error (SE) = 1.73 ± 0.14 millimeter (mm) standard length (SL)) and 3 (2.14 ± 0.07 mm SL) days after hatching (DAH); a period of digestive stability showed the highest activity in amylase and bile salt-dependent lipase. The second stage (from 4 (2.53 ± 0.09 mm SL) to 20 (10.92 ± 0.51 mm SL) DAH) was a period of digestive transition, during which leucine aminopeptidase, chymotrypsin, and alkaline proteases were identified as the predominant enzymes from 4 to 5 DAH. In the third stage—a period of digestive stability—pepsin was the major enzyme that occurred between 25 (16.51 ± 0.81 mm SL) and 30 (25.91 ± 0.82 mm SL) DAH. These results indicate that the spotted seatrout larvae have a digestive system adapted to lipids and carbohydrates at the onset of feeding, with an immediate transition to protein digestion when exogenous feeding begins. Additionally, the digestive system of the spotted seatrout may be considered mature at 25 DAH. Further research is needed to elucidate the mechanisms of digestive tract development in the spotted seatrout larvae.

Research Article

Investigation of the Protective Effect of Probiotic Lactobacillus plantarum Ep-M17 on the Hepatopancreas of Penaeus vannamei

Infection with the pathogenic bacterium Vibrio parahaemolyticus typically causes severe hepatopancreatic damage in Penaeus vannamei, often resulting in acute shrimp mortality. Therefore, protecting the shrimp’s hepatopancreas is crucial for enhancing their disease resistance. Previous research has demonstrated that the probiotic strain Lactobacillus plantarum Ep-M17 inhibits the growth of V. parahaemolyticus E1 in vitro. However, it remains uncertain whether Ep-M17 can provide protective benefits to the shrimp’s hepatopancreas. To address this knowledge gap, our present study investigated the histological changes, enzyme activity, gene transcription, and metabolite levels in the hepatopancreas of shrimp after a 4-week diet supplemented with Ep-M17. The results revealed that incorporating Ep-M17 into the shrimp’s diet alleviated the damage by V. parahaemolyticus E1 infection in hepatopancreatic cells. In addition, the inclusion of Ep-M17 notably boosted the effectiveness of immunodigestive enzymes such as SOD, AKP, and CAT. Furthermore, Ep-M17 stimulated gene transcription in crucial immune response-related signalling pathways like the mitogen-activated protein kinase signaling pathway and the antigen processing and presentation pathway. Moreover, the incorporation of Ep-M17 into shrimp diets increased the levels of β-alanine, and histidine in the hepatopancreas, enhancing anti-inflammatory capacity and improving the shrimp’s immune response. Overall, the results indicate that incorporating Ep-M17 into the diet can enhance shrimp disease resistance by bolstering both immune response and metabolic activity within the hepatopancreas. These results underscore the importance of probiotics in controlling aquatic animal diseases and highlight Ep-M17 as a promising dietary supplement for enhancing shrimp health and immunity in aquaculture.

Research Article

Potential Targets and Signaling Mechanisms of Cinnamaldehyde Enhancing Intestinal Function and Nutritional Regulation in Fat Greenling (Hexagrammos otakii)

Cinnamaldehyde is an ideal feed additive with good immune enhancement and anti-inflammatory regulation effects. However, the anti-inflammatory regulation mechanism in fat greenling (Hexagrammos otakii, H. otakii) remains unclear. The nine targets of cinnamaldehyde were gathered in identified by the Traditional Chinese Medicine Systems Pharmacology database and Uniprot database, and 1,320 intestinal inflammation disease (IIF)-related proteins were screened from DrugBank, Online Mendelian Inheritance in Man (OMIM), Genecards, and Pharmacogenetics and Pharmacogenomics Knowledge Base (PHARMGKB) Databases. According to the Gene Ontology enrichment results and Kyoto Encyclopedia of Genes and Genomes pathway results, cinnamaldehyde may regulated the responses to bacteria, lipopolysaccharide, an inflammatory cytokine, and external stimuli via the nuclear factor kappa-B (NFκB) signaling pathway within on inflammatory network. In addition, the protein–protein interaction analysis assisted in obtaining the closely related inflammatory regulatory proteins, including the C5a anaphylatoxin chemotactic receptor 1 (C5aR1), transcription factor p65 (RELA), prostaglandin G/H synthase 2 (PTGS2), and toll-like receptor 4 (TLR4), which were confirmed as the bottleneck nodes of the network to be more deeply verified via the molecular docking. Moreover, a cinnamaldehyde feeding model was established for evaluating the anti-inflammatory effect of cinnamaldehyde in vivo. According to the current findings implied that cinnamaldehyde may play a protective role against IIF H. otakii by reducing inflammation through the C5 complement (C5)/C5aR1/interleukin-6 (IL-6) and TLR4/NFκB/PTGS2 pathway. The study focused on investigating the action mechanism of cinnamaldehyde on IIF through combining pharmacology and experimental verification in vivo, which provided a fresh perspective on the promoting effect of cinnamaldehyde on IIF in fish.

Research Article

The Use of Acartia tonsa Nauplii during the First Days of Feeding on the Ontogeny of the Digestive System of Greater Amberjack (Seriola dumerili Risso, 1810)

The effect of feeding greater amberjack with copepod nauplii (Acartia tonsa) on the ontogeny of the digestive system was observed until 40 days after hatching (DAH). Copepods are part of the diet of fish larvae in nature, and they are rich in highly unsaturated fatty acids and free amino acids that enhance the digestive capacity of the fish. In a marine hatchery, four cylindroconical tanks of 2,700 L were stocked with about 150 × 103 greater amberjack larvae (Seriola dumerili) in each. The larvae were initially fed from 3 to 17 DAH in two tanks with copepod nauplii and rotifers (Brachionus sp.; Copepods group), while in the other two tanks, they were fed only with rotifers (Control group) during the same period. All the tanks were fed with rotifers (3–27 DAH), Artemia nauplii (12–22 DAH), enriched Artemia metanauplii (20–30 DAH), and formulated diet (25–40 DAH). Fish samples were taken regularly (every 2 or 4 days) for histological analysis and every day for the measurement of total length (TL). The TL was 3.7, 4.5 ± 0.1, 6.1, 11, 17.3 ± 0.1 and 20.3 ± 2.3 mm at 4, 10, 16, 22, 30, and 40 DAH, respectively. Copepod-fed fish showed higher TL in the last 2 days of the trial (), while mortality rates were lower in the beginning of the trial 10–17 DAH, (). In addition, copepods-fed fish had less skeletal deformities (). Pyloric caeca appeared earlier in the Copepods group compared with the Control, while the length and surface of the villi, the abundance of goblet cells/100 μm of intestine length, and the area covered with lipid vacuoles in the liver were significantly higher in the Copepods group (). We can conclude that the use of copepods in the diet of the greater amberjack larvae can improve the ontogeny of the digestive system.

Aquaculture Nutrition
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
See full report
Acceptance rate27%
Submission to final decision62 days
Acceptance to publication22 days
CiteScore6.300
Journal Citation Indicator1.100
Impact Factor3.5
 Submit Evaluate your manuscript with the free Manuscript Language Checker

We have begun to integrate the 200+ Hindawi journals into Wiley’s journal portfolio. You can find out more about how this benefits our journal communities on our FAQ.