Review Article

Microbial- and Plant-Derived Bioactive Peptides and Their Applications against Foodborne Pathogens: Current Status and Future Prospects

Table 1

Plant-derived bioactive peptides and their potential antimicrobial applications.

Name of the peptidePlant sourceTarget pathogenMode of actionReferences

ThioninsWheat, barley, oats, rice, rye, mistletoe, oil nut, and Abyssinian cabbageBacteriaPore formation, ion channel formation, cell membrane disruption, and protein synthesis inhibition[13]
Gram-positive or Gram-negative bacteria such as Pseudomonas, Xanthomonas, Agrobacterium, Erwinia, and Corynebacterium

PurothioninWheatBacteriaInterfere with DNA synthesis by inhibiting the activity of the enzyme ribonucleotide reductase, and also inhibit the activity of β-glucuronidase[13, 16]
Pseudomonas solanacearum, Xanthomonas phaseoli, Xanthomonas campestris, Erwinia amylovora, Corynebacterium flaccumfaciens, Corynebacterium michiganense, Corynebacterium poinsettiae, Corynebacterium sepedonicum, and Corynebacterium fascians

WAMP_1a and WAMP_1bSeeds of T. kiharaeFungiGrowth inhibition and induced destruction[17, 18]
Fusarium solani, Fusarium oxysporum, and Helminthosporium sativum
Bacteria
Gram-positive
Clavibacter michiganense, Gram-negative
Pseudomonas syringae
Erwinia carotovora

Lc-DefLentilFungiElectrostatic interaction with anionic lipid components of fungal membranes[18]
Aspergillus niger, Aspergillus versicolor, Botrytis cinerea, Fusarium culmorum, Fusarium solani, and Neurospora crassa

AFP-JPotato tuber (Solanum tuberosum cv. L Jopung)FungiInhibit serine protease activity[12, 19]
Trichosporon beigelii, S. cerevisiae, and Candida albicans
Bacteria
Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

Potide-GPotato tubersBacteriaSuppressed proteolytic activity of trypsin, chymotrypsin, and papain[12]
Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Clavibacter michiganensis subsp. michiganense
Fungi
C. albicans and R. solani
Virus
Potato virus Y

PKPI and PPI-IPotato sproutFungiInhibit fungal protease, spore germination, hyphal elongation, and the development of necrotic lesions[12]
Botrytis cinerea

Potato pseudothionin solanum tuberosum 1 (Pth-St1)Potato tubersBacteriaBind to the membrane receptor, chelation of Ca2+, and consequently, pores are being formed[12, 20, 21]
Clavibacter michiganensis and
Pseudomonas solanacearum
Fungi
F. solani

PKI1 and PPI3B2PotatoFungiFungal proteases affect spore germination, hyphal elongation, and development of necrotic lesions[22]
Botrytis cinerea

PLPKIPotatoPhytophthora infestans and Rhizoctonia solaniInhibited the activity of extracellular proteases[23]

PSPI-21 and PKSIPotato tubersFungiSerine proteinases inhibitor (affect the growth of oomycete mycelium and fungal mycelium) induces complete destruction of oomycete zoospores and partial destruction of fungal macroconidia[24]
Phytophthora infestans and Fusarium culmorum

Snakins (SN1 and SN2)PotatoBacteriaRapid aggregation of both Gram-positive and Gram-negative bacteria[12, 25]
C. michiganensis subsp. Sepedonicus, Ralstonia solanacearum, and R. meliloti
Fungi
B. cinerea, Fusarium oxysporum f. sp. Conglutinans, F. solani, Bipolaris maydis, Aspergillus flavus, and Colletotrichum graminicola

2S albumin-like protease inhibitorBarley seedsFungiPermeabilize fungal membranes[19, 26]
Alternaria brassicicola, Botrytis cinerea, Fusarium culmorum, Fusarium oxysporum f.sp. lycopersici,
Pyricularia oryzae, and Verticillium dahlia

Trypsin and chymotrypsin inhibitorsCabbage leavesFungiBlocked the synthesis of chitin in the cell wall, and weakened the fungal hyphae, thus inducing the leakage of intracellular contents from susceptible fungal species[19, 27]
Botrytis cinerea and Fusarium solani

ZmESR-6Kernels of maizeBacteriaInhibit protein synthesis and block ion channels[28, 29]
Clavibacter Michiganensis, Xanthomonas campestris, and Rhizobium meliloti
Fungi
Fusarium oxysporum f.sp. Conglutinans, Fusarium oxysporum f.sp.lycopersici, and Plectosphaerella cucumerina

FabatinBroad beanBacteriaInsertion into the plasma membranes of bacterial cells, leading to depolarization of the membrane and cell lysis[2931]
Escherichia coli, Enterococcus hirae, and Pseudomonas aeruginosa

VaD1Azuki beanBacteriaInhibit protein synthesis[29, 32]
Staphylococcus epidermis, Xanthomonas campestris pv. vesicatoria, and Salmonella typhimurium
Fungi
Fusarium oxysporum,
Fusarium oxysporum, and
Trichophyton rubrum
So-D2 and So-D7SpinachBacteriaDamage the cell wall via repression of gene expression or via restricting bacterial replication, causing cell lysis[29, 33]
Clavibacter
sepedonicus and Ralstonia solanacearum

Tu-AMP1 and Tu-AMP2Tulipa gesnerianaBacteriaPositively charged proteins interact with negatively charged membrane phospholipids, following a membrane permeability modification[21, 29]
Erwinia carotovora subsp. Carotovora, A. tumefaciens, Clavibacter michiganensis, and Curtobacterium flaccumfaciens pv. oortii

Pp-AMP 1 and Pp- AMP 2Japanese bamboo shootsBacteriaBinds to specific phospholipids and cause the exposure of toxicity, resulting in cationic imbalance[21]
E. carotovora, A. radiobacter, A. rhizogenes, C. michiganensis, and C. flaccumfaciens

MtDef5Medicago truncatulaBacteriaPermeabilizes the plasma membrane, translocates into the cells of this bacterial pathogen and binds to DNA, membrane permeabilization, and fungal growth arrest[29, 34]
Xanthomonas campestris pv. Campestris
Fungi
Fusarium graminearum and Neurospora crassa

Tad1Winter wheatPseudomonas cichoriiUnknown[29]

OsDef7 and OsDef8Rice Oryza sativaBacteriaInteract with the negatively charged phospholipids on the bacterial membrane surface and fungal membrane destabilization[29, 35]
Xanthomonas oryzae, pv. oryzae, X. oryzae pv. oryzicola, Erwinia carotovora subsp. atroseptica, Pseudomonas aeruginosa, and Dickeya dadantii
Fungi
Helminthosporium oryzae and Fusarium oxysporum f.sp. cubense

PvD1SeedsFungiOxidative damage related to the induction of ROS and NO production, cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles, and membrane permeabilization in the cells of this organism[36, 37]
C. albicans
Protozoa
Leishmania amazonensis

LimeninPhaseolus limensisBacteriaMembrane collapse by interacting with lipid molecules on the bacterial cell surface, inhibiting the translation of fungi. HIV-1 reverse transcriptase inhibition[29, 38, 39]
Mycobacterium phlei, Proteus vulgaris, Bacillus megaterium, and Bacillus subtilis
Fungi
Botrytis cinerea, Fusarium oxysporum, and Mycosphaerella arachidicola
Virus
HIV-1

Ct-AMP1Clitoria ternateaFungiCause a reduction in hyphal thickness and an apparent collapse of the plasma membrane leading to an apparent fragmentation of the cytoplasm[29, 40]
Botrytis cinerea, Cladosporium sphaerospermum, Fusarium culmorum Leptosphaeria maculans, Penicillium digitatum, Trichoderma viride, Septoria tritici, and Verticillium albo-atrum

J1-1Capsicum annuumBacteriaBinds with phosphoinositides (PIs) and PA[29]
Pseudomonas aeruginosa
Fungi
Fusarium oxysporum and Botrytis cinerea

MsDef1M. sativaFungiIon channel blocking and hyperbranching[41]
F. graminearum

HaDEF1SunflowerFungiMembrane permeabilization and apoptosis[41]
O. Cumana, O. Ramosa, S. cerevisiae, and A. brassicicola

Fa-AMP1 and Fa-AMP2Buckwheat seedsBacteriaDisruption of microbial membranes and phospholipid liposomes, an interaction with a specific receptor as an ion channel or a sphingolipid[21, 29]
Erwinia carotovora subsp. carotovora, Agrobacterium tumefaciens, Clavibacter michiganensis, and Curtobacterium flaccumfaciens pv. oortii
Fungi
Fusarium oxysporum and Geotrichum candidum

α-HordothioninsBarleyBacteriaInteracting electrically with fungal lipid bilayer and linking to the membrane surface, leading to permeabilization and disruption of the membrane organization[21, 42]
Clavibacter michiganensis subsp. michiganensis and
Xanthomonas campestris pv. vesicatoria

Pa-AMP-1Pokeweed seedsFungiInteract with the phospholipids of cell membranes, resulting in the inhibition of fungal growth[42, 43]
Alternaria panax and Fusarium sp., Rhizoctonia solani

Cp-thionin II (γ-thionins)Cowpea seedsBacteriaInsertion into the plasma membranes of bacterial cells, leading to depolarization of the membrane, cell lysis, and permeabilization of the hyphae, leading to leakage and granulation of the plasma membrane, and increased generation of reactive oxygen species (ROS) causes fungal growth inhibition[29, 30, 44]
Pseudomonas syringae, Staphylococcus aureus, and Escherichia coli
Fungi
F. culmorum

Dm-AMP1Dahlia merckiiFungiCauses a reduction in hyphal thickness and an apparent collapse of the plasma membrane leading to an apparent fragmentation of the cytoplasm[29, 40]
Botrytis cinerea, Cladosporium sphaerospermum, Fusarium culmorum
Leptosphaeria maculans, Penicillium digitatum
Trichoderma viride, Septoria tritici
Verticillium albo-atrum

Hs-AFP1Heuchera sanguineaFungiCauses germ tubes and hyphae to swell and form multiple hyphal buds, membrane permeabilization, ROS, and apoptosis[40, 41]
Botrytis cinerea, Cladosporium sphaerospermum, Fusarium culmorum,
Leptosphaeria maculans, C. albicans, C. krusei, A.flavus, Penicillium digitatum, Trichoderma viride, Septoria tritiei, and Verticillium albo-atrum

Rs-AFP2RadishesFungiCauses germ tubes and hyphae to swell and form multiple hyphal buds, membrane permeabilization, ROS, apoptosis, inhibit cell growth, and ion flux[40, 41]
Botrytis cinerea
Cladosporium sphaerospermum, Fusarium culmorum
Neurospora crassa
Leptosphaeria maculans, Penicillium digitatum Trichoderma viride
Septoria tritici
Verticillium albo-atrum

Hc-AFPHeliophila coronopifoliaFungiHyperbranching, fungal tip swelling, increased granulation of hyphae and spores, as well as hyphal and spore, and membrane permeabilization disruption[41]
Botrytis cinerea
Fusarium solani

Ah-AMP1Horse chestnutFungiReducing hyphal thickness and collapse of the plasma membrane causes an apparent fragmentation of the cytoplasm[29, 40]
Botrytis cinerea, Cladosporium sphaerospermum,
Fusarium culmorum,
Leptosphaeria maculans,
Penicillium digitatum
Trichoderma viride
Septoria tritici, and
Verticillium albo-atrum

NaD1 γ-thionin-like proteinNicotiana alataFungiInteracting with the cell wall causes the destruction of internal membrane integrity by membrane permeabilization and targets internal organelles by inducing the development of reactive oxygen species (ROS) and fungal cell death[37, 41, 45]
Leptosphaeria maculans, V. dahlia, Thielaviopsis basicola, Aspergillus nidulans, C. albicans, C. neoformans, C. gattii, and Fusarium oxysporum

BCP-2 alpha thioninBarley grainFungiBind to glucosylceramides and sphingolipids, leading to fungal cell lysis[21, 44, 46]
Botrytis cinerea
Trichoderma viride

Mo-CBP2 (chitin-binding protein)SeedsFungiIncreased the cell membrane permeabilization and produce reactive oxygen species, have DNase activity[47]
Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis

Mo-CBP3SeedsFungiInhibited spore germination and mycelial growth induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane leading to cell death[48]
Fusarium solani, F. oxysporum, Colletotrichum musae, and C. gloeosporioides

Cy-AMP1Cycad seedsFungiBind to chitin of fungus surface[49, 50]
F. oxysporum
G. candidum

LunatusinChinese lima beanBacteriaCauses membrane collapse by interacting with lipid molecules on the bacterial cell surface, inhibits mycelial growth of fungi, and inhibits HIV-1 reverse transcriptase protein-protein inhibition[16, 38, 49]
Bacillus megaterium, B. subtilis, P. vulgaris, and Mycobacterium phlei
Fungi
Fusarium oxysporum, Mycosphaerella arachidicola, and Botrytis cinerea
Virus
HIV-1

VulgarininHaricot beansBacteriaCell membrane disruption, growth inhibition, and death of bacteria, interaction with phosphorylinositol containing sphingolipids or glycosylceramides cause subsequent fungal cell death, and inhibit HIV-1 reverse transcriptase, protease, and integrase[16, 38, 51]
Mycobacterium phlei, Bacillus megaterium, B. subtilis, P. vulgaris
Fungi
Botrytis cinerea, Fusarium oxysporum, Physalospora piricola, and
Mycosphaerella arachidicola
Virus
HIV-1

HispidalinBenincasa hispidaBacteriaAmphipathicity and cationic charge of peptide facilitates the peptide attachment and insertion into the bacterial membrane to create transmembrane pores resulting in membrane permeabilization. Fungal hyphae growth inhibition[16, 52]
S. enterica,
S. aureus,
E. coli, and
P. aeruginosa
Fungi
A. flavus,
F. solani,
C. geniculate, and
P. chrysogenum

(Cg24-I)Carica candamarcensis, C. papaya, and Cryptostegia grandifloraFungiInhibition of mycelia growth and spore germination[16, 53]
F. solani, R. solani, and F. oxysporum

CpLP cysteine-like proteasesCalotropis proceraFungiFungal growth inhibition, production of ROS lead to oxidative stress, loss of cell function, and ultimately cell death by apoptosis or necrosis[54]
Colletotrichum gloeosporioides, Fusarium oxysporum,
Fusarium solani,
Rhizoctonia solani,
Neurospora sp., and
Aspergillus Niger

IbAMP1 plant defensinSeedsBacteriaIncrease permeability to the cell membrane, permitting efflux of ATP and interfering with intracellular molecular processes (DNA, RNA, and protein synthesis)[55, 56]
E. coli O157: H7 and Staphylococcus aureus

WAMPs (hevein-like AMPs)WheatFungiCell wall/membrane disruption, the peptide penetrates through the fungal cell walls and interferes with fungal growth by binding or cross-linking the newly-synthesized chitin chains, penetrating into the fungal hyphae and localized at the septum and hyphal tips, resulting in hyphal tip burst and leakage of the cytoplasmic constituents. Active against fungal metalloproteases[57, 58]
C. cucumerinum, A. alternata
F. oxysporum, and B. sorokiniana

AX (cysteine-rich proteins)Sugar beet leavesFungiReduction of hyphal growth[59]
C. beticola

Ay-AMPAmaranthus hypochondriacus seedsFungiDegrades chitin of the fungal cell walls and accumulates at septa and hyphal tips by the union to the fungus cell wall chitin, inhibiting the growth[60]
Candida albicans, Trichoderma sp., Fusarium solani, Penicillium chrysogenum,
Geotrichum candidum, Aspergillus candidus, Aspergillus. ochraceus, and Alternaria alternata

Pn-AMPs (hevein-type)Seeds of morning gloryFungiPenetrated very rapidly into fungal hyphae and localized at septum and hyphal tips of fungi, which caused the burst of hyphal tips. The burst of hyphae resulted in disruption of the fungal membrane and leakage of the cytoplasmic materials[61]
Botrytis cinerea, Phytophthora parasitica, Fusarium oxysporum, Rhizoctonia solani, and Saccharomyces cerevisiae

GAFP (hevein-type)Ginkgo bilobaFungiBurst of hyphal tips increased hyphal membrane permeabilization[7]
Fusarium graminearum, Fusarium moniliforme, Pellicularia sasakii Ito, and Alternaria alternata

Ns-D1 and Ns-D2Nigella sativa seedsFungiInhibited hyphal growth[7, 62]
Aspergillus niger,
Fusarium oxysporum,
Fusarium graminearum,
Fusarium culmorum,
Bipolaris sorokiniana, and
Botrytis cinerea

PINA and PINB (puroindoline)WheatFungiInteractions with cellular membranes and ion channel formation in the membranes[7]
Alternaria brassicicola,
Ascochyta pisi,
Botrytis cinerea,
Verticillium dahliae,
Fusarium culmorum, and
Cochliobolus heterostrophus

Ha-AP10 (lipid transfer proteins)Sunflower seeds (Helianthus annuus)FungiMembrane permeabilization by electrostatic interaction with anionic membrane phospholipids induces liposome leakage and permeabilization of fungal spores[55, 63]
Fusarium solani

WjAMP1 (hevein-like AMPs)Leaves of Wasabia japonica L.BacteriaPeptide binding to the membrane can activate several pathways that will cause cell death[7, 38, 64]
Escherichia coli
Agrobacterium tumefaciens
Pseudomonas cichorii
P. plantarii
P. glumae
FungiInhibit spore germination and hyphal growth, interaction with fungal membrane lipids resulting in the formation of membrane pores, and leakage of cytoplasmic materials
Botrytis cinerea
Fusarium solani
Magnaporthe grisea
Alternaria alternata

LTP protein (lipid transfer proteins)WheatFungiFungal membranes form a pore resulting in an efflux of intracellular ions culminating in cell death[7]
Rhizoctonia solani
Curvularia lunata
Alternaria sp.
Bipolaris oryzae
Cylindrocladium
Scoparium
Botrytis cinerea
Sarocladium oryzae

Kalata B (cyclotide)Oldenlandia affinisBacteriaInduces leakage of contents from phospholipid vesicles and forms large pores in lipid bilayers, has lytic ability causing membrane leakage of helminth, and inhibits the development of nematode larvae and motility of adult worms[7, 65]
Staphylococcus aureus
E. coli
Nematode
Haemonchus contortus
Trichostrongylus colubriformis

Shepherins (glycine- and histidine-rich peptides)Capsella bursa-pastorisBacteriaInsertion into the membrane, triggering disruption of lipid bilayer physical integrity, membrane thinning/formation of transient pores, and destabilization of internal membranes, leading to disruption of the endosome[66, 67]
Erwinia herbicola, Escherichia coli, and Pseudomonas putida
Fungi
S. cerevisiae
C. albicans
Cryptococcus neoformans